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1 Introduction

The Standard Model (SM) of the strong and electroweak interactions is the present para-

digm of particle physics. Its validity has been tested to a level better than one per mille

at particle accelerators [1]. Nevertheless, there are arguments against the SM being the

fundamental model of particle interactions [2], giving rise to the investigation of compet-

ing alternative or extended models, which can be tested at high-energy colliders, such as

the Large Hadron Collider (LHC) [3, 4], or a 500 − 1000GeV, e+e− International Linear

Collider (ILC) [5, 6]. One of the most promising possibilities for physics beyond the SM

is the incorporation of Supersymmetry (SUSY), which leads to a renormalizable field the-

ory with precisely calculable predictions to be tested in present and future experiments.

The simplest supersymmetric extension of the SM is the Minimal Supersymmetric Stan-

dard Model (MSSM) [7–10]. Among the most important phenomenological consequences

of SUSY models, is the prediction of new particles. There is much excitement for the

possibility of discovering these new particles at the recently built LHC [11, 12], and their

properties will need to be precisely measured to confirm (or refute) that they belong to a

SUSY model. This last effort might be better suited for the ILC [5, 6, 13–16], currently

being projected. This job needs the performance of precision measurements, but also of

precision computations which are well suited for experimental comparisons. In the present

work we will focus on the properties of the SUSY partners of the SM quarks — the squarks.

Once produced, squarks will decay in a way dependent on the model parameters (see

e.g. [17]). If gluinos (the fermionic SUSY partners of gluons) are light enough, squarks

– 1 –
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will mainly decay into gluinos and quarks (q̃ → qg̃) [18, 19], which proceeds trough a

coupling constant of strong strength. If the mass difference among different squarks is

large enough, some squarks can decay via a bosonic channel into an electroweak gauge

boson and another squark (q̃a → q̃′b(Z, W
±)), and if Higgs bosons are light enough, also

the scalar decay channels are available (q̃a → q̃′b(h
0, H0, A0, H±)) [20–23], which can be

dominant for third generation squarks due to the large Yukawa couplings. Otherwise,

the main decay channels of squarks are their partial decays into charginos/neutralinos

(the fermionic SUSY partners of the electroweak gauge and Higgs bosons) and quarks

(q̃ → q′χ). Some of those channels are expected to be always open, given the large mass

difference between quarks and squarks, and that the charginos/neutralinos are expected to

be lighter than most of squarks in the majority of SUSY-breaking models. In the few cases

in which these channels are closed, the squarks will decay through flavour changing neutral

channels [24–26], or through three- or four-body decay channels involving a non-resonant

SUSY particle [27–32].

Here we will concentrate on the squark decay channels involving charginos and neu-

tralinos. Their partial decay widths were computed some time ago, including the radiative

corrections due to the strong (QCD) [33–35], and the electroweak (EW) [36–39] sectors

of the theory. These radiative corrections are large in certain regions of the parameter

space [38], and their complicated expressions are not suitable for their introduction in the

monte-carlo programs used for experimental analyses. In this work we present approxi-

mations for the partial decay widths of squarks into charginos and neutralinos, including

the QCD corrections, and compare these approximations against the fixed-order one-loop

corrected partial widths.

In section 2 we introduce our notation and conventions for particles and couplings, and

set up the numerical values that we will use in our analysis, section 3 presents the QCD

one-loop computation of the partial decay widths and shows some numerical examples,

in section 4 we perform a renormalization group analysis of the partial decay widths, in

section 5 we perform a numerical comparison of the one-loop and renormalization group

computations, and finally section 6 shows our conclusions.

2 Notation, conventions and numerical setup

To describe the computation of the partial decay widths, we will follow the conventions of

ref. [40]. Throughout this work we will use a third-generation notation to describe quarks

and squarks, but the analytic results and conclusions are completely general, and can be

used for quarks-squarks of any generation. We will show numerical results only for third

generation quarks/squarks (top t/stop t̃/bottom b/sbottom b̃), since their decay widths are

the ones that present the most interesting properties.

We will study the partial decay widths of sfermions into fermions and

charginos/neutralinos,

Γ(f̃ → f ′χ) . (2.1)

We denote the two sfermion-mass eigenvalues by m
f̃a

(a = 1, 2), with m
f̃1
< m

f̃2
. The

sfermion-mixing angle θf is defined by the transformation relating the weak-interaction

– 2 –



J
H
E
P
0
4
(
2
0
0
9
)
0
1
6

(f̃ ′a = f̃L, f̃R) and the mass eigenstate (f̃a = f̃1, f̃2) sfermion bases:

f̃a = R
(f)
ab f̃

′
b ; R(f) =

(

cos θf − sin θf
sin θf cos θf

)

. (2.2)

By this basis transformation, the sfermion mass matrix,

M2
f̃
=

(

M2
f̃L

+m2
f + c2β(T3 −Qs2W )M2

Z mf M
LR
f

mf M
LR
f M2

f̃R
+m2

f +Qc2β s
2
W M2

Z

)

, (2.3)

becomes diagonal: R(f)M2
f̃
R(f)† = diag

{

m2
f̃1
,m2

f̃2

}

. M2
f̃L

is the soft-SUSY-breaking mass

parameter of the SU(2)L doublet,1 whereasM2
f̃R

is the soft-SUSY-breaking mass parameter

of the singlet. T3 and Q are the usual third component of the isospin and the electric charge

respectively, mf is the corresponding fermion mass, and sW is the sinus of the weak mixing

angle.2 The mixing parameters in the non-diagonal entries read

MLR
b = Ab − µ tanβ , MLR

t = At − µ/ tanβ .

Ab,t are the trilinear soft-SUSY-breaking couplings, µ is the higgsino mass parameter,

and tanβ is the ratio between the vacuum expectation values of the two Higgs doublets

tanβ = v2/v1. The input parameters in the sfermion sector are then:

(M
f̃L
,M

b̃R
,Mt̃R

, Ab, At, µ, tanβ) , (2.4)

for each sfermion doublet. From them, we can derive the masses and mixing angles:

(m
b̃1
,m

b̃2
, θb) , (mt̃1

,mt̃2
, θt) . (2.5)

For the trilinear couplings, we require the approximate (necessary) condition

A2
q < 3 (m2

t̃
+m2

b̃
+M2

H + µ2) , (2.6)

where mq̃ is of the order of the average squark masses for q̃ = t̃, b̃, to avoid colour-breaking

minima in the MSSM Higgs potential [41–44].

Although the tree-level chargino (χ+)-neutralino (χ0) sector is well known, we give

here a short description, in order to set our conventions. We start by constructing the

following set of Weyl spinors:

Γ+ ≡ (−iW̃+, H̃+
2 ) ,

Γ− ≡ (−iW̃−, H̃−1 ) ,

Γ0 ≡ (−iB̃0,−iW̃ 0
3 , H̃

0
1 , H̃

0
2 ) .

(2.7)

1With Mt̃L
= Mb̃L

due to SU(2)L gauge invariance.
2We abbreviate trigonometric functions by their initials, like sW ≡ sin θW , c2β ≡ cos(2β), tW ≡

sW /cW , etc.

– 3 –
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The mass Lagrangian in this basis reads

LM = −1

2

(

Γ+,Γ−
)

(

0 MT

M 0

)(

Γ+

Γ−

)

− 1

2

(

Γ1,Γ2,Γ3,Γ4

)

M0











Γ1

Γ2

Γ3

Γ4











+ h.c. , (2.8)

where we have defined

M =

(

M
√
2MW sβ√

2MW cβ µ

)

,

M0 =











M ′ 0 MZcβsW −MZsβsW
0 M −MZcβcW MZsβcW

MZcβsW −MZcβcW 0 −µ
−MZsβsW MZsβcW −µ 0











, (2.9)

with M and M ′ the SU(2)L and U(1)Y soft-SUSY-breaking gaugino masses. The four-

component mass-eigenstate fields are related to the ones in (2.7) by

χ+
i =

(

VijΓ
+
j

U∗ijΓ̄
−
j

)

, χ−i = Cχ̄i+T =

(

UijΓ
−
j

V ∗ijΓ̄
+
j

)

, χ0
α =

(

NαβΓ
0
β

N∗αβΓ̄
0
β

)

= Cχ̄0T
α ,

where U , V andN are in general complex matrices that diagonalize the mass-matrices (2.9):

U∗MV † = MD = diag (M1,M2) (0 < M1 < M2) ,

N∗M0N † = M0
D = diag

(

M0
1 ,M

0
2 ,M

0
3 ,M

0
4

)

(0 < M0
1 < M0

2 < M0
3 < M0

4 ) .
(2.10)

Using this notation, the tree-level interaction Lagrangian between fermion-sfermion-

(chargino or neutralino) reads [38]

L
χf̃f ′

=
∑

a=1,2

∑

r

L
χr f̃af ′

+ h.c. ,

L
χr f̃af ′

= −g f̃∗a χ̄r
(

A
(f)
+arPL +A

(f)
−arPR

)

f ′ . (2.11)

Here we have adopted a compact notation, where f ′ is either f or its SU(2)L partner for

χr being a neutralino or a chargino, respectively. Roman characters a, b . . . are reserved for

sfermion indices and i, j, . . . for chargino indices; Greek indices α, β, . . . denote neutralinos;

Roman indices r, s . . . indicate either a chargino or a neutralino. For example, the top-

squark interactions with charginos are obtained by replacing f → t, f ′ → b, χr → χ−r ,

– 4 –
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r = 1, 2. The coupling matrices that encode the dynamics are given by

A
(t)
+ai = R

(t)
a1V

∗
i1 − λtR

(t)
a2V

∗
i2 ,

A
(t)
−ai = −λbR

(t)
a1Ui2 ,

A
(t)
+aα =

1√
2

(

R
(t)
a1 (N∗α2 + YLtWN

∗
α1) +

√
2λtR

(t)
a2N

∗
α4

)

,

A
(t)
−aα =

1√
2

(√
2λtR

(t)
a1Nα4 − Y t

RtWR
(t)
a2Nα1

)

,

A
(b)
+ai = R

(b)
a1U

∗
i1 − λbR

(b)
a2U

∗
i2 ,

A
(b)
−ai = −λtR

(b)
a1 Vi2 ,

A
(b)
+aα = − 1√

2

(

R
(b)
a1 (N∗α2 − YLtWN∗α1)−

√
2λbR

(b)
a2N

∗
α3

)

,

A
(b)
−aα = − 1√

2

(

−
√
2λbR

(b)
a1Nα3 + Y b

RtWR
(b)
a2Nα1

)

, (2.12)

with YL and Y t,b
R the weak hypercharges of the left-handed SU(2)L doublet and right-handed

singlet fermion, and λt = mt/(
√
2MW sinβ) and λb = mb/(

√
2MW cosβ) are the Yukawa

couplings normalized to the SU(2)L gauge coupling constant g. Note the following, each

coupling is formed by two parts: the gaugino part, formed exclusively by gauge couplings,

and the higgsino part, which contains factors of the quark masses, each of these parts will

receive different kinds of corrections (see below).

Using these definitions, the tree-level partial decay widths read

Γtree
ar = Γtree(f̃a → f ′χr) =

g2

16πm3
f̃a

λ(m2
f̃a
,M2

r ,m
2
f ′)× (2.13)

×
[

(m2
f̃a
−M2

r −m2
f ′)
(

|A(f)
+ar|2 + |A

(f)
−ar|2

)

− 4mf ′MrRe
(

A
(f)
+ar A

(f)∗
−ar

)]

,

with λ(x2, y2, z2) =
√

[x2 − (y − z)2][x2 − (y + z)2].

2.1 Numerical setup

For the numerical analysis and plots we will use fixed values for the SUSY parameters, and

make plots by changing one parameter at a time. For the central values of the parameters

we take:

tanβ = 5 , µ = 300GeV , M = 200GeV , M
f̃L

= 800GeV , mg̃ = 3000GeV ,

MSUSY ≡M
f̃R

= 1000GeV , At = Ab = 2M
f̃L

+ µ/ tanβ = 1660GeV ,

(2.14)

where we have introduced a parameter MSUSY as a shortcut for all the SUSY mass pa-

rameters which are not explicitly given. We use the GUT relation M ′ = 5/3 t2W M for the

bino mass parameter. For the SM parameters we use mt = 171.2GeV, mb = 4.7GeV,

αs(MZ) = 0.1172, s2W = 0.221, MZ = 91.1875GeV, 1/α = 137.035989. The renormal-

ization scale Q is taken to be the physical mass of the decaying squark. The value of

the trilinear couplings Ab,t is given by the algebraic expression, the given numerical value

– 5 –
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corresponds to the default values of the other parameters, this numerical value will change

in the plots, the chosen expression allows to show plots with a significant parameter varia-

tion avoiding colour-breaking-vacuum conditions (2.6). With these input parameters, the

central values for the physical SUSY particle masses are:

Mχ+ = (170.40, 337.50)GeV ,

Mχ0 = (89.52, 172.28, 305.46, 338.58)GeV ,

m
b̃
= (802.05, 1000.30)GeV ,

mt̃ = (720.55, 1084.25)GeV . (2.15)

It is illustrative to identify the largest EW-basis component in each physical state. Of

course, we have performed our computation using the full numerical mixing among the EW-

basis and the physical-basis components, but this identification will help us to analyze the

numerical results. The lightest squarks (t̃1, b̃1) are predominantly left-handed, the lightest

chargino and neutralinos (χ+
1 , χ

0
1, χ

0
2) are predominantly gaugino-like, whereas the heaviest

ones (χ+
2 , χ

0
3, χ

0
4) are predominantly higgsino-like. Of course, the parameters in eq. (2.14)

are just and example for illustrative purposes, we have checked that our conclusions hold

for a wide range of the parameter space.

3 QCD Corrections

Following this setup, we have computed the full one-loop QCD corrections to the squark

partial decay widths into charginos and neutralinos (2.1). The renormalization prescrip-

tions follow that of ref. [38]. The QCD corrections include contributions from gluon loops,

gluino loops, and gluon bremsstrahlung. The full one-loop corrections have been performed

using the FeynArts/FormCalc/LoopTools packages [40, 45–49]. We have used dimensional

reduction for the regularization of ultraviolet (UV) divergences, and a small gluon mass

to regularize the infrared (IR) divergences. The three-body phase-space integration of the

real gluon emission is performed analytically over the full energy range, and the depen-

dence on the gluon mass is seen to cancel between the virtual and the real corrections.

We have found full agreement with previous works [34, 35, 38, 39], and will not repeat

the full lengthy formulae here. The corrections are seen to be numerically large, specially

in certain regions of the parameter space [38], specially those involving processes with a

bottom-squark in the initial state, and in a regime of large tanβ values.

We follow the hints from Higgs-boson physics [50–53], and define effective Yukawa

couplings which should encode the leading part of the corrections [51]:

λeff.b ≡ meff.
b

v1
≡ mb(Q)

v1(1 + ∆mb)
,

λeff.t ≡ meff.
t

v2
≡ mt(Q)

v2(1 + ∆mt)
, (3.1)

– 6 –



J
H
E
P
0
4
(
2
0
0
9
)
0
1
6

where mq(Q) is the running quark mass and ∆mq is the finite threshold correction. The

SUSY-QCD contributions to ∆mq are:

∆mSQCD
b =

2αs
3π

mg̃µ tanβ I(mb̃1
,m

b̃2
,mg̃) ,

∆mSQCD
t =

2αs
3π

mg̃
µ

tanβ
I(mt̃1

,mt̃2
,mg̃) , (3.2)

where the function I(a, b, c) is the scalar three-point function at zero momentum transfer,

and reads:

I(a, b, c) =
a2b2 ln(a2/b2) + b2c2 ln(b2/c2) + c2a2 ln(c2/a2)

(a2 − b2)(b2 − c2)(a2 − c2) .

The effective description of squark decays consists in replacing the tree-level quark masses

in the couplings (2.12) by the effective Yukawa couplings of eq. (3.1), and use this lagrangian

to compute the partial decay width, schematically:

ΓY uk.−eff. = Γtree(meff.
q ) . (3.3)

This expression contains the large one-loop corrections from the finite threshold correc-

tions (3.1), but it also contains higher order corrections. At this point we can make the

following: make a computation that combines the higher order effects (which ignore the

effects of external momenta) and the fixed one-loop (which ignore the higher order effects).

At the same time, this will allow us to quantify the degree of accuracy obtained by the

effective description. We define a Yukawa-improved decay width computation:

ΓY uk.−imp. ≡ Γtree(meff.
q ) + (Γ1−loop − Γ1−loop Y uk.−eff.) ≡ Γtree(meff.

q )(1 + δY uk.−rem.)

(3.4)

where

Γ1−loop = Γtree + δΓ1−loop

δ1−loop =
δΓ1−loop

Γtree

δY uk.−rem. =
Γ1−loop − Γ1−loop Y uk.−eff.

Γtree(meff.
q )

(3.5)

Here Γ1−loop is the one-loop fixed order prediction for the partial decay width,

Γ1−loop Y uk.−eff. is the one-loop expansion of the prediction using effective couplings, and

therefore, the remainder contribution (δY uk.−rem.) is the part of the one-loop contribution

that can not be described by the Yukawa effective couplings, it quantifies the approximation

done by the effective description.

The one-loop effective prediction Γ1−loop Y uk.−eff. is computed by taking the compu-

tation using effective couplings (3.3), expanding it in series, and keeping only the one-loop

terms. Specifically:

m(Q) = m(m)

[

1− 2

π
αs(Q) log

(

Q

m

)

+ . . .

]

, (3.6)

– 7 –
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Figure 1. a) Partial decay width and b) relative corrections to the top-squark decay width into

the lightest chargino as a function of the SU(2)L squark mass scale Mf̃L
, for the parameters of

eq. (2.14).

and

meff. = m(Q)(1−∆m) , (3.7)

therefore, the part of the one-loop effective mass is:

δmeff. = m(m)

[

− 2

π
αs(Q) log

(

Q

m

)

−∆m

]

, (3.8)

this is the mass that will be used in the effective Yukawa couplings to compute

Γ1−loop Y uk.−eff., and m(m) is the running quark mass at the quark mass scale. Finally,

we define a Yukawa-improved correction factor in the following way:

δY uk.−imp. =
ΓY uk.−imp. − Γtree(mq)

Γtree(mq)
. (3.9)

All these definitions will allow us to precisely analyze the approximations. As an

example, figure 1 shows the partial decay width (and the relative correction) of a top-

squark decaying into the lightest chargino, as a function of the SU(2)L squark mass scale

M
f̃L

(2.3), the rest of the parameters are given in (2.14). We see a big dip in the corrections

for squark masses around 1250GeV, with negative corrections surpassing −100% — which

would mean a negative decay width, which obviously does not make sense. What happens

is that, for this very special setup of parameters, the tree-level computation of the partial

decay width vanishes, so the one-loop contribution exceeds the tree-level prediction. Under

these circumstances one-loop perturbation theory does not hold, and we can not claim

the validity of any result obtained by the one-loop perturbative expansion, that is: we

can not give a prediction for the decay width in those parts of the parameter space in

the present approximation. Note, also, that the effective prediction ΓY uk.−eff. (3.3) is

(by definition) a positive quantity, therefore the effective description can not reproduce

the one-loop result at all, which means a large remainder δY uk.−rem. (3.5). However,

there are a couple of circumstances surrounding these situations: first of all, they appear

in tiny regions of the parameter space; second, and more important, this effect occurs

– 8 –
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Figure 2. a) Top-squark partial decay width into the lightest chargino and b) relative corrections,

as a function of the gluino mass. Shown are the different approximations: tree-level; one-loop;

Yukawa-effective coupling; Yukawa-improved. The input parameters are given in eq. (2.14).

precisely on decay channels that have a negligibly small branching ratio, and therefore

are phenomenologically irrelevant. We can see that the dip in figure 1b around 1250GeV

coincides with the minimum of the partial decay width in figure 1a. For these reasons we

will not try to give a reasonable prediction for these decay widths in those corners of the

parameter space. From now on we will limit ourselves to point out where they appear, so

that the reader is warned that we can not trust the results in those cases. Outside of this

dip, there are two different regions. For squark masses larger than 1250GeV the one-loop

correction is around −45% whereas the remainder correction (3.5) is around −28% that

means that, roughly, one third of the one-loop corrections can be described as coming

from the effective couplings (3.1). Since the corrections (from both: one-loop and effective

couplings) are quite large, one can provide the improved (3.9) description. In the present

situation δY uk.−imp. is larger than the corrections from the effective couplings and the fixed-

order one-loop corrections, δY uk.−imp. ∼ −57% but it accounts for two kind of effects: the

contribution of higher order terms, and the dependence of the radiative corrections on the

external momenta. On the other side of the plot, for squark masses below 1250GeV, the

situation is quite different. The one-loop corrections are relatively small (15%), whereas the

effective description gives a slightly smaller result, this region has light particles running

in the loops, and the one-loop functions are expected to depend much on the external

momenta. In this situation the effective description can not describe properly the radiative

corrections. The improved description (3.9), on the other hand, basically coincides with the

fixed order one-loop result. In summary: our improved description includes the higher order

terms of the Yukawa-effective couplings, and the external momenta dependence of the one-

loop corrections. It is able to describe both situations: when the one-loop computation

gives a sufficient approximation, and when higher order corrections are important and

should be taken into account.

Be as it may, it turns out that the effective description using just the Yukawa threshold

corrections (3.1) is not enough for the squark decay widths description. The one-loop

corrections develop a term which grows as the gluino mass mg̃ [33], which is absent in the
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effective Yukawa couplings (3.1). Figure 2 shows the comparison of the tree-level, one-

loop, and Yukawa-effective computations of the top-squark decay width into charginos, as

a function of the gluino mass, for the input parameters of eq. (2.14). One can clearly see

the log-like behaviour of the one-loop corrections, which can not be reproduced using the

effective coupling.3 The logarithmic terms in the gluino mass are a clear example of the

non-decoupling effects. To understand their origin, one can think on the following: in a

process where all external (initial and final state) particles belong to the SM sector, one

can separate the loop contributions in two kinds: SM-like (with only SM and Higgs boson

particles running inside the loops), and non-SM like (with only SUSY particles running

inside the loops). Each kind is UV (and IR) finite by itself, so one can remove the non-

SM-like part from the computation — or take all non-SM-like particle masses very large –

without any ill effect. In the present case, however, there are SM and SUSY particles as

external states, the Feynman diagrams can no longer be divided into SM-like and non-SM

like. The UV divergences from the SM sector are cancelled against UV-divergences of the

SUSY-sector, and as a consequence if we remove a SUSY particle from the computation,

the computation is UV-divergent — and therefore meaningless. If we try to remove a

particle by setting its mass to very large values, this divergence appears as a logarithm of

the corresponding particle mass, and we obtain the aforementioned non-decoupling effects.

In summary: the QCD corrections to squark decay widths produce explicit non-decoupling

terms of the sort logmg̃.

To include the logarithmic terms in the effective descriptions, we have extracted from

the one-loop result the logmg̃ terms. We have expanded the full one-loop result in the limit

mg̃ À mq̃, and we have used the reduction factors from ref. [54] to obtain scalar quantities.

The results for top-squark decays into charginos are:

∆A
(t)
−ai = F

(t)
−ai + δA

(t)
−ai = −

αs
2π
A

(t)
−ai log

m2
g̃

µ2
0

,

∆A
(t)
+ai = F

(t)
+ai + δA

(t)
+ai =

{

λtR
(t)
a2V

∗
i2

αs
π

+
αs
2π
A

(t)
+ai

}

log
m2
g̃

µ2
0

, (3.10)

here ∆A+,− are the full one-loop corrections to the form factors, F+,− are the contribu-

tions from the corresponding one-loop diagrams, δA+,− the counterterm contributions, and

A+,− are the tree-level couplings defined in (2.12). µ0 is the scale appearing in the dimen-

sional reduction of the one-loop UV-divergent integrals, which appears when applying the

procedure from ref. [54], and can be though as a renormalization scale. However, these

expressions do not give any hint at the origin of the logmg̃ terms, or how can they be

computed. To understand those terms a renormalization group analysis is in order.

4 Renormalization group analysis

In order to extract the exact dependence on the renormalization scale, we make a renor-

malization group analysis, which will allow us to compute the logarithmic terms in mg̃. To

3The variation of the Yukawa-effective corrections on the gluino mass (3.2) in figure 2a is of a 0.13%,

which can not be appreciated in the plot.
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compute those terms, we construct an effective theory below the gluino mass scale, which

contains only squarks, quarks, charginos, neutralinos and gluons in the light sector of the

theory, and integrate out the gluino contributions. We find out the renormalization group

equations (RGE) of the gaugino and higgsino couplings, and perform the matching with the

full MSSM couplings at the gluino mass scale mg̃. In the present computation we will con-

sider only logarithmic RGE effects, and neglect the possible threshold effects at the gluino

mass scale. Since the effective theory does not contain gluinos, only the contributions from

the gluon have to be taken into account. We will present only the computation for the

top-squark decay into charginos, the other couplings follow from the present computation.

4.1 Gluon contribution to A
(t)
+ai

The coupling A
(t)
+ai is the sum of two terms: a gaugino coupling, and a higgsino coupling,

as seen in eq. (2.12). To shorten up the expressions, we will introduce the shortcuts H+,

G, which represent the higgsino and gaugino part respectively:

A
(t)
+ai = H+ +G ; H+ = −λtR(t)

a2V
∗
i2 , G = R

(t)
a1V

∗
i1 . (4.1)

The total gluon contribution to the divergent part of the vertex form factors and the

wave function renormalization constants is:

(Coef∆)+ =

(

αs
3π
A

(t)
+ai +

1

2

αs
3π
A

(t)
+ai

)

=
αs
2π
A

(t)
+ai , (4.2)

where the first term comes from the vertex form factor’s divergent part and the second

from the fermion and sfermion wave function renormalization constants. Then, the gluon

contribution to the β function is

β+,g = −2(Coef∆)+ = −αs
π
A

(t)
+ai = −

αs
π

(H+ +G) . (4.3)

Therefore, the renormalization group equation is

dA
(t)
+ai(t)

dt
= −αs(t)

π
A

(t)
+ai(t) , (4.4)

where t = logQ, Q being the renormalization scale. To solve that equation, we make use

of the standard RGE for the QCD coupling constant (see e.g. [55])

dαs(t)

dt
= − 1

2π
β0α

2
s(t) , (4.5)

β0 being the standard QCD β-function:

β0 =
11Nc − 2Nf

3
−
N
f̃

6
− 2Ng̃ ,

where Nc = 3 is the number of colors, Nf , Nf̃
, and Ng̃ are the number of quarks, squarks

and gluino that have a mass below the scale Q at which we compute the β0 function.4

4The RGE evolution is performed by steps, taking into account the change in the β0 function as the

scale Q crosses thresholds of colored particles.
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Inserting expression (4.5) in (4.4) we obtain

dA
(t)
+ai(t)

A
(t)
+ai(t)

=
2

β0

dαs(t)

αs(t)
. (4.6)

Solving the equation we obtain

A
(t)
+ai(t)

A
(t)
+ai(t0)

=

(

αs(t)

αs(t0)

) 2

β0

. (4.7)

Finally, using the QCD running coupling constant

αs(Q)

αs(Q0)
= 1− β0

αs(Q)

2π
log

Q

Q0
, (4.8)

the running of the right-handed vertex coupling constant is, approximated to O(αs):

A
(t)
+ai(Q) ' A

(t)
+ai(Q0)

(

1− αs(Q)

π
log

Q

Q0

)

. (4.9)

The boundary conditions at Q0 = mg̃ are

A
(t)
+ai(mg̃) = H+(mq(mg̃)) +G(mg̃) , (4.10)

then, the running coupling constant is

A
(t)
+ai(Q) ' (H+(mq(mg̃)) +G(mg̃))

(

1− αs(Q)

π
log

Q

mg̃

)

. (4.11)

Now, we have the squark-chargino running coupling constant as a function of the gauge and

Higgs boson couplings at the gluino mass scale, but we want to express it as a function of

couplings at the renormalization scale Q. Note that the gauge part of the coupling G (4.1)

only contains EW gauge couplings, and they do not receive one-loop running contributions

from the QCD sector, therefore it is a constant term.

G(mg̃) = G(Q) ≡ G . (4.12)

The higgsino coupling H+ (4.1), on the other hand, has a dependence on the quark Yukawa

coupling (or mass), which does run due to QCD corrections, according to the RGE,

m(Q) = m(Q0)

(

αs(Q)

αs(Q0)

) 4

β0

, (4.13)

by inserting these expression into eq. (4.7) we can obtain

A
(t)
+ai(Q) = A

(t)
+ai(mg̃)

(

αs(Q)

αs(mg̃)

) 2

β0

= H+(mq(mg̃))

(

αs(Q)

αs(mg̃)

) 2

β0

+G

(

αs(Q)

αs(mg̃)

) 2

β0

= H+(mq(Q))

(

αs(Q)

αs(mg̃)

)
−2

β0

+G

(

αs(Q)

αs(mg̃)

) 2

β0

' H+(mq(Q))

(

1 +
αs(Q)

π
log

Q

mg̃

)

+G

(

1− αs(Q)

π
log

Q

mg̃

)

(4.14)
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where, in the last line, we have made the O(αs) approximation. Note that the expressions

for the higgsino and gaugino couplings are different. Actually, if we write the higgsino and

gaugino couplings at the scale Q as a function of the couplings at the scale mg̃ they have

the same form (4.11), since they have the same RGE (4.7). The difference appears when

we write the higgsino/gaugino couplings at the scale Q as a function of the gauge/Higgs

couplings at the same scale (4.14), due to the different running of the gauge (4.12) and

Higgs-boson (4.13) couplings between the scales mg̃ and Q. The last line in eq. (4.14)

agrees with the logmg̃/µ0 term of the fixed order one-loop expression in (3.10).

4.2 Gluon contribution to A
(t)
−ai

The gluon contribution to the divergent part of the left-handed couplings A
(t)
−ai, eq. (2.12),

is the same that in the previous case.

(Coef∆)− =

(

αs
3π
A

(t)
−ai +

1

2

αs
3π
A

(t)
−ai

)

=
αs
2π
A

(t)
−ai , (4.15)

But now, the coupling only contains a Yukawa like coupling

β−,g = −2(Coef∆)− = −αs
π
A

(t)
−ai = −

αs
π
H− . (4.16)

The renormalization group equation is

dH−(t)

dt
= −αs(t)

π
H−(t) , (4.17)

which has as a solution

H−(Q) = H−(mq(mg̃))

(

αs(Q)

αs(mg̃)

) 2

β0

. (4.18)

Following the same steps as in the the previous section, we obtain

H−(Q) = H−(mq(mg̃))

(

αs(Q)

αs(mg̃)

) 2

β0

= H−(mq(Q))

(

αs(Q)

αs(mg̃)

)
−2

β0

' H−(mq(Q))

(

1 +
αs(Q)

π
log

Q

mg̃

)

, (4.19)

where in the last line we have made the O(αs) approximation. This expression coincides

with the higgsino running coupling constant for A
(t)
+ai (4.14), and it also agrees with the

logmg̃/µ0 term of the fixed order one-loop expression in (3.10).

4.3 Renormalization group summary

The renormalization group running of the coupling constant, can be summarized as follows:

we can use effective gaugino and higgsino couplings given by,

geff.(Q) = g

(

αs(Q)

αs(mg̃)

) 2

β0 ' g

(

1− αs(Q)

π
log

Q

mg̃

)

,

λ̃eff.b,t (Q) = λeff.b,t (Q)

(

αs(Q)

αs(mg̃)

)
−2

β0 ' λeff.b,t (Q)

(

1 +
αs(Q)

π
log

Q

mg̃

)

, (4.20)
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Figure 3. a) Partial decay widths and b) relative corrections of the top-squark decay into the

lightest chargino, as a function of the gluino mass mg̃. Shown are different approximations to the

computation. The effective, improved and remainder computations include the logmg̃/Q terms.

The input parameters are given in eq. (2.14).

where λeff.(Q) are the effective Yukawa couplings defined in (3.1). We define then an effec-

tive partial decay width, computed by replacing g and λ in the tree-level expression (2.13)

by the expressions of eq. (4.20):

Γeff. = Γtree(geff.(Q), λ̃eff.(Q)) ,

and we define improved and remainder widths and corrections (Γimp., δimp., δrem.), in

the same fashion as the Yukawa-effective, Yukawa-improved and Yukawa-remainder of

eqs. (3.4), (3.5), (3.9).

The origin of the logmg̃ terms is a consequence of the SUSY-breaking, and, techni-

cally, can be seen in different ways, depending on the approximation used to make the

computation. In the one-loop fixed order computation they appear because of the can-

cellation of UV-divergences between the gluon and gluino loops (as explained above), but

in the effective theory point of view, they appear because of the different running of the

gauge/Higgs boson and gaugino/higgsino couplings. In a fully SUSY theory the gaugino

(higgsino) couplings are equal to the gauge (Higgs) boson couplings, and they have the

same RGE, but in a theory with broken SUSY (as the present one) these couplings are no

longer the same, they have different RGE, and the difference between them is a measure

of the SUSY-breaking (logmg̃).

Figure 3 shows the partial decay width of the top-squark into the lightest chargino,

where we include the logmg̃ terms of eq. (4.20) in the effective description. The input

parameters are given in eq. (2.14). Now the effective description follows the logarithmic

behaviour of the full one-loop corrections. Moreover, we have checked the validity of our

result by comparing the full one-loop corrections in the limit mg̃ À M with the one-loop

expansion of the effective description, which contains only logmg̃/µ0 terms.5 The results

agree with the previous results of ref. [33, 35] in the limit mg̃ À mq̃. Our results go

5The comparison is performed by comparing the slope of the different computations in the plots as a

function of log
mg̃

µ0
.
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beyond the ones of ref. [33], by including the Yukawa terms, including explicitly all the

chargino/neutralino and squark mixing and couplings, showing the exact dependence from

the renormalization group, and performing (see below) the numerical comparison with the

fixed order computation.

Figure 3b shows the new value of the remainder contributions. At low values of the

gluino mass, the remainder is still large, because mg̃ ' mq̃ and the logarithmic approxi-

mation does not make sense, but for mg̃ ≥ 1TeV the remainder contributions stay below

the 2% level.

5 Numerical analysis

Following the computation and setup of the previous sections, we perform a complete

numerical analysis. We will concentrate on third generation squark decays (top-squarks and

bottom-squarks), as they have the richest phenomenology, since only on them the higgsino

couplings are large enough. The input parameters that we use are given in eq. (2.14), and

the resulting spectrum is discussed in section 2.1. We have chosen a large value for the

gluino mass to enhance the effects of the logarithmic terms.

As a first example we show in figure 4 the relative corrections to the squark (stop

and sbottom) partial decay widths into charginos and neutralinos, as a function of the

gluino mass (mg̃). We show the predictions of the effective description including only

the effects of the effective Yukawa couplings (3.1) (labelled Yuk.), and including also the

logmg̃/Q terms of eq. (4.20) (lines marked with full circles). We show the partial decays

into the two charginos and two neutralinos χ0
1, χ

0
3, the results for the other neutralinos

are similar to the ones shown. The second neutralino (χ0
2) is mostly a gaugino (w̃) and its

results are very similar to χ−1 , whereas the fourth neutralino (χ0
4) is mostly of higgsino-type

(h̃) and its results are very similar to χ0
3. In all plots we observe the same pattern: the

effective Yukawa couplings (3.1) do not describe correctly the variation with mg̃, only after

including the log-terms of eq. (4.20) does the effective description follow the shape of the

one-loop corrections. The remainder corrections δY uk.−rem. (3.5) — those terms that are

not described by the effective couplings — have a dependence on mg̃ before including the

log-terms, but after including them we see that in all channels δrem. is essentially flat above

mg̃ ∼ 1500GeV, which means that they have absorbed the bulk of the dependence on mg̃.

Moreover, after including the log-terms δrem. is much smaller — between a −2% and a −5%
— than without them — between a 5% and a −10%. The effects of the log-terms are more

visible in the gaugino-like channels, where the Yukawa couplings play no role, and the bulk

of the corrections corresponds to the log-terms. In these channels the corrections change in

a range of a 10% in the interval mg̃ = [500, 5000]GeV. In the higgsino-like channels their

importance is less apparent. On one side the effective Yukawa couplings carry the bulk of

the corrections (around a −30%), and on the other side the sign difference among the two

contributions (4.20) make them to partially compensate each other. But also in this case

the effective Yukawa couplings alone (3.1) do not describe correctly the mg̃-dependence,

and there is a range of a 3% variation in the corrections in the studied mg̃-interval. The

spikes that are seen in some plots correspond to the threshold singularities for the opening
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Figure 4. Relative corrections of the squark decays into charginos and neutralinos, as a function

of mg̃. We show the results including only the effective Yukawa couplings, eq. (3.1), and results

including the logmg̃/Q terms, eq. (4.20) (lines with circles). The input parameters are given in

eq. (2.14).
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Channel δY uk.−rem. δrem. Channel δY uk.−rem. δrem.

b̃1 → tχ−1 2.4% −1.5% t̃1 → tχ+
1 −10% −6%

b̃1 → tχ−2 −10% −3% t̃1 → tχ+
2 −29% −12%

b̃1 → bχ0
1 −18% −8% t̃1 → tχ0

1 10% −0.6%
b̃1 → bχ0

3 −51% −18% t̃1 → tχ0
3 −14% −2%

b̃2 → tχ−1 −67% −19% t̃2 → tχ+
1 −6% −4%

b̃2 → tχ−2 −31% −10% t̃2 → tχ+
2 −19% −7%

b̃2 → bχ0
1 −12% −6% t̃2 → tχ0

1 3% −1.8%
b̃2 → bχ0

3 −40% −16% t̃2 → tχ0
3 −11% −4%

Table 1. Value of the remainder corrections (3.5) for specific squark partial decay widths, including

only the effective Yukawa couplings, eq. (3.1), and results including the logmg̃/Q terms, eq. (4.20),

for tanβ = 50, and the rest of input parameters as given in eq. (2.14).

of the squark decay into gluinos (q̃ → g̃q), we recall that in this work we are not interested

in the region where the gluino decay channel is open (mg̃ +mq < mq̃), since in that region

the strong decay is the leading one, and the chargino/neutralino channels have a negligible

branching ratio, and are phenomenologically irrelevant. Nevertheless we include the plots

also in that region to show the trend of the corrections.

Next, we show in figure 5 the evolution of the different corrections as a function of

tanβ. Here we see large negative corrections, growing with tanβ. The origin of the negative

corrections is twofold: on one side the standard QCD running of the quark mass reduces

significantly the Yukawa coupling, and on the other, for positive values of the higgsino

mass parameter µ the contributions to ∆mq (3.2) are also positive, decreasing even more

the effective Yukawa couplings (3.1). However, even after taking into account these two

sources of corrections, still there is a large remainder of relative corrections (up to −67%
at tanβ = 50 for some channels) which can not be accounted for. After including the

logarithmic terms, eq. (4.20), the situation is quite different. Now, the effective description

can reproduce quite well the one-loop results, and the remainder corrections (those that

can not be described by the effective couplings) are reduced at a level (in absolute value)

below the 20%. Table 1 shows the value of the remainder corrections (3.5) for all studied

channels at tanβ = 50, including the full effective description, and including only the

Yukawa corrections. We see that in all channels the corrections are reduced significantly

after including the logarithmic terms.

Finally figure 6 shows the evolution of the corrections to the partial decay widths

as a function of the SU(2)L squark mass parameter M
f̃L
. The abrupt change which is

seen at the middle of the plots corresponds with the situation in which M
f̃L
' M

f̃R
,

and the physical states suffer an abrupt change between left and right chirality. This

explains the difference in value and behaviour of the corrections in the regions of M
f̃L

below and above that point. This is also the situation, shown in figure 1, where the partial

decay widths can become zero, and the one-loop corrections can become non-perturbative.

In all situations the description including the log-terms provides a better description of

the radiative corrections with a δrem. (3.5) much smaller than with the effective Yukawa
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Figure 5. Relative corrections of the squark decays into charginos and neutralinos, as a function

of tanβ. We show the results including only the effective Yukawa couplings, eq. (3.1), and results

including the logmg̃/Q terms, eq. (4.20) (lines with circles). The input parameters are given in

eq. (2.14).
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Figure 6. Relative corrections of the squark decays into charginos and neutralinos, as a function

of Mf̃L
. We show the results including only the effective Yukawa couplings, eq. (3.1), and results

including the logmg̃/Q terms, eq. (4.20) (lines with circles). The input parameters are given in

eq. (2.14).
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couplings (3.1) alone, and a much softer variation, meaning that the description of eq. (4.20)

is accurate for all values of the squark mass. Let us remember, that by changing the SUSY

parameterM
f̃L
, the physical squark masses also change, and that since the renormalization

scale is taken to be the decaying squark mass, the log-terms of eq. (4.20) effectively run

also with M
f̃L

as ∼ logmg̃/Mf̃L
(for mostly-left-handed squarks) — a contribution that

can not be described with the effective Yukawa couplings (3.1).

6 Summary and conclusions

We have proposed and analyzed an effective description of squark interactions with

charginos and neutralinos in the MSSM. We have applied it to the partial decay widths of

squarks into charginos and neutralinos. We have compared it with the full one-loop correc-

tions, and have proposed a way to combine the effective description (which includes higher

order terms) with the complete one-loop description (which includes all kinetic and mass-

effects factors), providing an improved computation, Γimp. (3.4). The difference between

the effective description and the improved computation is encoded in the remainder contri-

bution, δrem. eq. (3.5), which gives a measure of the precision of the effective description.

The effective description includes the effective Yukawa couplings (3.1), which take

into account the resummation effects [50–53]. Note that the computation of the threshold

corrections (3.2) includes only the (tanβ, cotβ) proportional terms, since the terms that

would be proportional to the trilinear couplings (Ab, At) are actually subleading [53]. This

description produces large remainder δY uk.−rem. corrections, and does not reproduce the

behaviour of the one-loop corrections as a function of several parameters — notably it is

missing a logmg̃ term. Therefore, we conclude that it does not reproduce satisfactorily the

one-loop corrections, and it is not a good approximation.

We have computed the missing logmg̃ terms with the help of the renormalization group

— eq. (4.20) –, and found agreement between the renormalization group analysis and the

large mass expansion of the one-loop result (3.10). After including also the logmg̃-terms of

eq. (4.20), the effective description produces a reasonable approximation to the radiative-

corrected partial decay widths of squarks into charginos and neutralinos, as shown by a

small absolute value of the remainder contributions δrem., and by a nearly-flat behaviour

of the corrections as a function of different parameters.

The origin of the logarithmic terms can be explained in different (complementary)

ways, depending on the kind of approximation that we take. First of all, from the funda-

mental point of view, they are non-decoupling terms that appear due to the supersymmetry-

breaking. Since we are testing SUSY relations (equality of the gauge/Yukawa couplings

to the gaugino/higgsino couplings), and SUSY is broken (by the term mg̃ among others),

we have to find some effect that tells us about the breaking of SUSY at that scale —

e.g. a logmg̃-term. Second, from a fixed-order one-loop description point of view, the

SUSY relation appears because the UV-divergences of the loops containing gluinos cancel

with the UV-divergences of the loops containing gluons, and the log-terms that accompany

those loops combine between them — producing a logmg̃-term. And third, from a renor-

malization group (and effective theory) point of view, the gaugino/higgsino couplings run
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different than the gauge/Yukawa couplings in the region where SUSY is broken, that is,

for scales below mg̃. The running of the gaugino/higgsino couplings from the scale mg̃ to

the chosen renormalization scale produces logmg̃/Q-terms. Since the Yukawa couplings

already include some QCD running, whereas the EW-gauge couplings do not, the relation

between the gauge/gaugino and Yukawa/higgsino couplings has some differences (4.20).

The presence of the non-decoupling logmg̃-terms implies a deviation of the equality

between the higgsino/gaugino and Higgs/gauge couplings predicted by exact SUSY. This

deviation is important, and has to be taken into account in the experimental measurement

of SUSY relations. At the same time, it gives us access to information about heavy particles

that can not be directly produced at the LHC/ILC. For these reasons it is important to

include these effects in the computation for the predictions of squark observables at the

LHC and the ILC. The effective description of squark/chargino/neutralino couplings given

by eqs. (3.1), (3.2), (4.20), is simple to write, and to introduce in computer codes, it costs

little computational power, and provides a reasonable description for squark decays into

charginos and neutralinos, so it can be used in monte-carlo generators and other computer

programs that provide predictions for the LHC and the ILC to improve their accuracy at

a minimum cost.
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